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Why do we run LLMs on edge devices?

Natural Interfaces enable more applications to bridge the digital world to the real world.
Conversational Speech, enabled by LLMs, for ex.:

o Question/answer style chat for appliances & equipment |n'?::;r§;s

o Customer service in big box retail, hospitality & commercial outlets >3x larger
Demand for Edge LLMs from our Customers is unprecedented  Touch 3}% ::a!ﬁ
Edge deviceshave manybenefits ~1.5B =1

units/yr

o Addressesprivacyconcerns Mouse E _

o Improvesreliability ~500M o

o Lowerlatency Keyboard units/yr i}g

o Lowercost ~150M

o  Lower energy use units/yr ! & Conversational Speech

o More personalization U ) <> Artificial Vision

‘W&/ @, Command Words
:@IWake Words
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<=  Sensors / Event Detection



Large Language Models progress towards the Edge

2010s: Increased popularity of

RNNs (1980s) & LSTMs (1995)

Github Copilot

2022

[
®
1950s-2000s: Rule-based “Attention is All You
& symbolic systems Need” paper
1990 2013 2018
1950 2010 2017 2021
1990-2000s: Hidden Markov GPT (Generative
Models, n-gram models Pre-trained
Transformer)
°®
Word2Vec

®

07/2023: Meta Llama2
(7-70B) official release

]
End of 2023: TinyLlama
03/2023: Llama2 (1B), Open project to train
run on 4GB RPI4 1B parameter model
2024
2023
03/2023: OpenAl GPT-4 12/2023: Microsoft
(1T params) Phi-2 (2.7B)

11/2022: ChatGPT
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What is the current state of the art?

e [lama2 and Phi-2 are foundation models with similar architectures.

o Alotof companies & teams are working on similar models, mainly

focussing on the ultra high end

e Seeingabifurcation with some looking at the low compute regime $opyy
2

o Qualcomm announced running at 20 tokens / second on a Snapdragol ,

8Gen3 o s

. (/‘90;0"9"?“73‘9

o Intelannounced running at 40 tokens / second on a Xeon Max 9480 3“‘”‘/"05,‘9
o ARMblogshowing 9.6 tokens/ second on 3 Cortex-A700 CPUs

But, for real-time LLM applications we require ~ 2.5 words / second

>= 3.3 tokens / second
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Large Language Model Architecture Compute Scaling

= The compute has 2 separate contributions

Linear

o Linear terms: Matrix-vector
multiplication with the W weight
matrices (fixed cost per time step)

Feed forward:
r = "Vg(Si]U(I/Vlz) : VVQ'Z)

o Attention terms: Matrix-vector
multiplication with the K key matrix
(scales linearly with the number of

tokens) Self Attention:
» Example: Llama2 7B g = Wyx;
o Linear term: 7B MACs per token (1 MAC ki = ”ikxz
per parameter) v = Wy
R 1T
o Attention and linear terms are y; = softmax (g, K /vVd)V
approximately equal cost after ~400 u=Wy

tokens (800 with fused masking)
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Summary of Different Optimization Approaches

* Many approaches, several have been used in other domains for along time
* Some target the attention terms, some the linear terms, some both.

* Additional benefit from retraining & fine-tuning the model

System
Optimizations

)

—»[ Low-bit Quantization ]

—-—[ Parallel Computation ]—

‘

Model Parallelism |

—»[ Memory Management ]

Decentralized
Inference

B

Kernel Fusion I

—»[ Request Scheduling ]

Tailored Attention |

—>[ Kernel Optimizations J—

Sampling
Optimization

Variable
Sequence length

A\

Automatic
Compilation

Sparse
Computation

Algorithmic
Innovations

4-‘[ Decoding Algorithm ]»

—»[ Architecture Design ]»

—»[ Model Compression ]»

Non-autoregressive

|

Decoding

Speculative

Decoding
—>| Early Exiting |
—"| Cascade Inference |
Config Downsizing |

Attention
Simplification

|

Recurrent Unit

—>| Activation Sharing |

Conditional
Computing

Knowledge
Distillation

Towards Efficient Generative Large Language Model

Serving: ASurvey from Algorithms to Systems (2023)
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Network Pruning




Dynamic Sparsification & Retraining

= Switch which parts of the model are evaluated

depending upon the input

= |f model uses RelLUs then naturally get sparsity.

If not, can still approximate small values as 0

= ~1.3x speedup without much loss in accuracy

= Many more optimizations to reduce amount of

data

O

input sparsity, output sparsity, efficient data

structures for memory management, row-
column binding
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For edge applications we did
supervised fine-tuning (SFT)on a
custom dataset with modest resources
(16 A100 GPUs)

This allows additional optimizations,

e.g.
o Quantization-aware training
o Sparsity-aware training

Leading to 2x speedup



LLM Sparsification Speedup example

Comparison of the
previous state-of-the-art
GGML LLaMa-7B
implementation (right)

Vs.

Syntiant optimized LLM
(left), with the sparsified
version outputting tokens
at 2x the speed with the
same accuracy.

Syntiant
2X Faster
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Summary: Syntiant is Accelerating LLMs for the Edge

* Like therest of the Alindustry, demand for LLMs from our customers is huge
* Unlike the rest of the Al industry, we operate in compute constrained environments

o Leveraging our expertise in sparse edge computation, we have developed a generalized
sparsity approach that speeds up the State of the Art LLaMA-7B model by 1.3x - 2x

o Onamulti-threaded x86 machine, this means a rate of 10 tokens per second.

o Onedge-accelerated NPU's supported by our Syntiant Inference SDK(Ambarella,
Qualcomm, etc), we achieve up-to 30 tokens per second.

* These are the customer use-cases we are enabling:

o Question/Answer style chat for home appliances, commercial equipment, etc.
o Customer service in big box retail

* [tisourbelief that optimized LLMs running on Edge hardware will gain widespread adoption.
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Path Forward: Shaping the Edge of Tomorrow with Small LLMs

Edge-Optimized LLMs: Tailoring small LLMs for more

intuitive, natural interfaces for real-world to Al interactions -1 1O/ 1@ -
@eeahp 2

i i y RS .

Next-Gen Silicon: Custom silicon compute & memory will eb\\’w/"’/'b !,“.,“"

boost efficiency and generative Al capabilities at the Edge

Economizing Memory: Innovation in memory usage, shrink
both physical & cost footprint of Edge LLMs & generative Al

Generative Al Ubiquity: Forecasting a future where small,
efficient LLMs are ubiquitous, transforming everyday
technology with natural, generative interfaces.
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Thank You

info@syntiant.com

@ www.syntiant.com

@Syntiantcorp

Syntiant Corp.
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