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Overview 

Unlocking Hidden Information in Passive Infrared (PIR) 
A passive infrared sensor (PIR sensor) is an electronic sensor that measures infrared (IR) light radiating from 
objects in its field of view. Most often used in motion detectors, they are small, inexpensive, low-power, easy-to-
use, and durable. These characteristics make them suitable for use in appliances and gadgets used in homes or 
businesses, such as security alarms and automatic lighting applications. 

PIR sensors are typically used to detect general movement, but not to give information on who or what moved. 
This is because traditionally they are deployed in low-power compute environments paired with very simple 
threshold-based triggering mechanisms. This paper describes how advanced AI algorithms can be used to unlock 
more information inherently present in PIR sensor data. 

PIR sensors are almost always used to detect whether a human has moved within the sensor’s range, but the 
simple triggering algorithms used are sensitive to other types of movement. Therefore, they tend to produce high 
rates of false alarms, for example arising from pets and automobiles. Attempts to reduce false alarms by lowering 
the sensitivity instead causes high rates of missed detections. If instead advanced AI algorithms are employed, 
both false alarms and missed detections can be drastically reduced. The Syntiant Neural Decision Processor 
(NDP) enables such algorithms to be deployed in an ultra-low-power computing environment. 

How PIR Sensors Work 
PIRs are made of a pyroelectric sensor that can detect levels of infrared radiation. Everything emits some low-
level radiation, and the hotter something is, the more radiation is emitted. The sensor in a motion detector is 
actually split in two halves, both of which are configured to detect changes in IR levels.  

When the sensor is idle, both slots detect the same amount of IR, the ambient amount radiated from the room or 
walls or outdoors. When a warm body like a human or animal passes by, it first intercepts one half of the PIR 
sensor, causing a positive differential change between the two halves. When the warm body leaves the sensing 
area, the reverse happens -- the sensor generates a negative differential change. These change pulses are what 
is detected. 
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Illustration 1: PIR sensors measure temperature changes in multiple sub-regions of a monitoring area caused by 
the motion of heat-emitting objects. 

Most of the variation in PIR sensor specifications are not due to the sensors themselves, but instead due to the 
lenses used to focus light onto the sensors. The lenses -- commonly Fresnel lenses -- collect light from large 
areas of a room or landscape. They have multiple facets that focus light from different sectors of an area to 
different sensors. The different faceting and sub-lenses create a range of detection areas, interleaved with each 
other. 

Illustration 2: Lenses 
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The Advantages of AI Over Traditional PIR Triggering Algorithms 
In a typical deployment, a device may contain multiple PIR sensors, which, when combined with a suitable lens, 
monitor different areas of a room or landscape. The different sensor “channels” are constantly active and contain 
different information on each channel.  

Illustration 3 (below) shows a time-series trace of a 3-channel PIR deployment in a home surveillance 
application. In this example, a person walks in front of the device in the middle of the time period. Positive and 
negative sensor values correspond to increases and decreases in temperature, respectively.  

Illustration 3: A simple threshold-based triggering mechanism typically used with PIR sensors 

Because PIR sensors are usually deployed in ultra-low-power conditions, coupled with lightweight microcontroller 
units (MCUs) running off a battery, very simple detection algorithms must be used. These algorithms are usually 
based on thresholds and counters. As shown in Illustration 3, if any of the sensor channels deviate from zero 
(positive or negative) by an amount exceeding a detection threshold d_t, the detector counter increments by one. 
If any of the channels remain above d_t in subsequent time steps, the counter continues to increment; otherwise 
a time-out occurs, and the counter is reset to zero. If the counter exceeds a predefined count threshold c_th, the 
final detection is triggered (the yellow bar in Illustration 3) and the counter is reset.  
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Simple algorithms like this can be effective at detecting motion in the environment. However, because they are 
simply based on the overall sensor levels exceeding a threshold in short time windows, they ignore much of the 
information in the complex patterns of sensor change over time, as well as the patterns of how the different 
sensor channels relate to each other.  

AI algorithms can learn to take advantage of such information using Machine Learning (ML) models such as Deep 
Neural Networks (DNNs). DNNs can use much longer time spans of sensor data from multiple channels 
simultaneously and learn how this complex sensor data differentiates the presence of different kinds of objects 
(such as humans, animals, or cars), the speed of an object’s motion, and its size and position. To learn these 
patterns, ML algorithms require many examples of the sensor data traces in response to the different kinds of 
events important in the application. 

 

 

Illustration 4: Deep Neural Networks (DNNs) can learn to distinguish types of moving objects based on the 
complex time-varying sensor output patterns across multiple sensor channels. 
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Example Application: Home Entry Door Surveillance 
A common application for PIR sensors is in a home surveillance application of an entry door (see Illustration 5). 
In this application the sensors enable a homeowner to receive alerts, sometimes with accompanying video data, if 
a person approaches the door. The PIR sensors are included with a small battery-powered camera that the 
homeowner can easily mount outside the door.  

To attempt to save power, the camera is only enabled if the PIR sensors detect motion. However, because of the 
simplicity of the detection algorithms and the complexity of the outdoor environment, such systems are heavily 
susceptible to false alarms from pets, cars, and even people walking past on the sidewalk.  

 

 

Illustration 5: Video snapshot and accompanying PIR sensor data trace for a home entry door surveillance 
deployment. 
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Illustration 6 shows how a properly trained DNN can be used to dramatically reduce both false alarms and 
missed detections for this application. Compared to the simple threshold-based algorithm, the DNN could be used 
to reduce false alarms by 80%, missed detections by 60%, or both types of errors simultaneously by 40%.  
The model used in this example was trained on the outputs of PIR sensors exposed to approaching humans and 
passing cars, as well as instances with no moving objects. The training involved two hundred 1-minute long PIR 
time series from a wide variety of locations. Models were then tested on a held out set of PIR sensor locations 
and compared to a simple threshold-and-count algorithm supplied by an experienced customer known for 
commercial PIR deployments. 

 

 

Illustration 6: DNN-based detectors greatly reduce both false alarms and missed detections in a human vs. 
vehicle detection task. 

 

While DNNs can use longer time spans of sensor outputs to their advantage, this introduces signal latency, if 
sensor outputs are being used to make a decision about motion activity in the recent past. Latency is similarly 
introduced by the detector counters in threshold-based detectors. Latency is potentially an issue in applications 
where video data is being buffered and streamed off device upon a detection event. In order to catch the video 
corresponding to the motion event, longer video clips have to be buffered and streamed for detectors with longer 
latency. This consumes more system resources and power. 
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As shown in Illustration 7(a), latency is easily configurable in DNN-based detectors by excluding future sensor 
data from models making decisions about the current frame. The amount of future context used to train a model 
will set its corresponding signal latency. Illustration 7(b) shows the performance impact of reducing the signal 
latency from 3 seconds to 0.25 seconds, compared to the threshold-based detector with a latency of 0.25 
seconds. In this case, the DNN-based detector is still able to maintain a large advantage over the threshold-based 
detector, possibly because of its remaining ability to use long time spans in the past to make a decision about the 
current frame. 

 

 

Illustration 7: Configuring DNN latency by excluding future sensor data from models making decisions about the 
current frame. (a) Shows the difference in the model data inputs for a detector having 3s (left) and 250ms (right) 
of latency with respect to the current frame (dashed line). (b) Shows that there is some impact to the precision-
recall curve to reducing latency, but the DNN detector still holds a large advantage over the threshold-based 
detector with the same latency. 
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Using the Syntiant NDP to Run AI Algorithms at Ultra-Low Power 
Previously, DNN-based PIR detection algorithms had been too compute intensive to be deployed in low-power 
systems. However, the Syntiant NDP was designed to run DNNs with up to four hidden layers while consuming 
under 200 microwatts (uW) of power during active sensor processing. One such example is the DNN used to 
achieve the results shown in Illustration 6. 

Once appropriate training data is obtained and prepared for training DNNs, the Syntiant Training Development Kit 
(TDK) can easily be used to train and test models that are ready for deployment on the NDP. Model training and 
testing is performed through a familiar Keras Python interface to TensorFlow, the most widely used library for 
DNN-based system development. Models can be trained on premises or on standard AWS EC2 instances 
running Deep Learning AMIs, potentially employing GPU co-processors to speed up training. Syntiant also offers 
services to accelerate data collection, data preparation, model training, and developer training. 

 

 

 

Illustration 8: Syntiant’s TDK developer interface is the familiar Keras API to Tensorflow 

 

Models trained with Syntiant’s TDK are ready for system integration using the Syntiant Software Development Kit 
(SDK), either for live testing on the Syntiant NDP9101 Rasberry Pi evaluation system, or for production 
deployment. The SDK provides a collection of software for execution on companion processor(s) responsible for 
controlling NDP devices, such as an associated application processor (AP) or an NDP-embedded processor (for 
example, the ARM M0 microcontroller of an NDP device). The SDK source code may also be used as an example 
in deployments for which direct integration is not appropriate. 
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Illustration 9: Syntiant NDP101 Block Diagram 

 

 

Summary 

Increasing PIR’s Powers of Observation Without Increasing its Power Consumption 
AI algorithms employing DNNs enable dramatic improvements in distinguishing humans from other moving 
objects using PIR sensors. This exemplifies what is achievable in many other PIR sensor use cases, including in 
manufacturing, robot navigation, and agriculture -- as well as with many other types of inexpensive sensors. 
These sensors have had limited observational powers because they’ve been deployed in ultra-low-power 
compute environments that are severely limited in on-device intelligence and the ability to continuously stream 
data off the devices.  

The Syntiant NDP removes the computation bottleneck for AI algorithms at ultra-low-power consumption. The 
NDP architecture is built from the ground up to run DNNs. It achieves breakthrough performance by highly 
coupled computation and memory, exploiting the vast inherent parallelism of DNN computation and computing 
only at required numerical precision. The devices combine these benefits to achieve approximately 100x 
efficiency improvement over stored program architectures such as CPUs and DSPs. Furthermore, they are easily 
programmed and integrated using Syntiant’s accompanying TDK and SDK.  

 




