SYNTIANT

Power-Efficient Object Detection
in PIR Data Using Syntiant NDP

Overview

Unlocking Hidden Information in Passive Infrared (PIR)

A passive infrared sensor (PIR sensor) is an electronic sensor that measures infrared (IR) light radiating from
objects in its field of view. Most often used in motion detectors, they are small, inexpensive, low-power, easy-to-
use, and durable. These characteristics make them suitable for use in appliances and gadgets used in homes or
businesses, such as security alarms and automatic lighting applications.

PIR sensors are typically used to detect general movement, but not to give information on who or what moved.
This is because traditionally they are deployed in low-power compute environments paired with very simple
threshold-based triggering mechanisms. This paper describes how advanced Al algorithms can be used to unlock
more information inherently present in PIR sensor data.

Standard PIR sensitivity PIR sensitivity using Syntiant’s
ultra-low-power Neural Decision
Processor (NDP)

PIR sensors are almost always used to detect whether a human has moved within the sensor’s range, but the
simple triggering algorithms used are sensitive to other types of movement. Therefore, they tend to produce high
rates of false alarms, for example arising from pets and automobiles. Attempts to reduce false alarms by lowering
the sensitivity instead causes high rates of missed detections. If instead advanced Al algorithms are employed,
both false alarms and missed detections can be drastically reduced. The Syntiant Neural Decision Processor
(NDP) enables such algorithms to be deployed in an ultra-low-power computing environment.

How PIR Sensors Work

PIRs are made of a pyroelectric sensor that can detect levels of infrared radiation. Everything emits some low-
level radiation, and the hotter something is, the more radiation is emitted. The sensor in a motion detector is
actually split in two halves, both of which are configured to detect changes in IR levels.

When the sensor is idle, both slots detect the same amount of IR, the ambient amount radiated from the room or
walls or outdoors. When a warm body like a human or animal passes by, it first intercepts one half of the PIR
sensor, causing a positive differential change between the two halves. When the warm body leaves the sensing
area, the reverse happens -- the sensor generates a negative differential change. These change pulses are what
is detected.

Copyright © 2019 SYNTIANT | 7555 Irvine Center Drive Suite 200, Irvine, CA 92618 | www.syntiant.com 2

Detecting area
\ Fresnel
lens

- @ as =)

Heat source movement Output signal

Most of the variation in PIR sensor specifications are not due to the sensors themselves, but instead due to the
lenses used to focus light onto the sensors. The lenses -- commonly Fresnel lenses -- collect light from large
areas of a room or landscape. They have multiple facets that focus light from different sectors of an area to
different sensors. The different faceting and sub-lenses create a range of detection areas, interleaved with each

other.

Copyright © 2019 SYNTIANT | 7555 Irvine Center Drive Suite 200, Irvine, CA 92618 | www.syntiant.com 3

The Advantages of Al Over Traditional PIR Triggering Algorithms

In a typical deployment, a device may contain multiple PIR sensors, which, when combined with a suitable lens,
monitor different areas of a room or landscape. The different sensor “channels” are constantly active and contain
different information on each channel.

lllustration 3 (below) shows a time-series trace of a 3-channel PIR deployment in a home surveillance
application. In this example, a person walks in front of the device in the middle of the time period. Positive and
negative sensor values correspond to increases and decreases in temperature, respectively.

T T ‘ T I T I T T |
0.15 f |
d_t /'
0.1 » 4
“— L / ||| |
5 0.05 |l
Q— \ ,‘(lv 'i -/"
a— / J \ »
8 0 ? VYA _:.f F Y VIR ; PV AY \ - 4
b .0.05 | V| |
o ' d‘ t\ v
g _________________ _(T)L S B AU U SRS NN S
m '0.1 I ! “' \‘ B!
U) ilw |
'015 B \ ’| -
l | |V 1 | | l | |

Because PIR sensors are usually deployed in ultra-low-power conditions, coupled with lightweight microcontroller
units (MCUs) running off a battery, very simple detection algorithms must be used. These algorithms are usually
based on thresholds and counters. As shown in lllustration 3, if any of the sensor channels deviate from zero
(positive or negative) by an amount exceeding a detection threshold d_t, the detector counter increments by one.
If any of the channels remain above d_t in subsequent time steps, the counter continues to increment; otherwise
a time-out occurs, and the counter is reset to zero. If the counter exceeds a predefined count threshold c_th, the
final detection is triggered (the yellow bar in lllustration 3) and the counter is reset.

Copyright © 2019 SYNTIANT | 7555 Irvine Center Drive Suite 200, Irvine, CA 92618 | www.syntiant.com 4

Simple algorithms like this can be effective at detecting motion in the environment. However, because they are
simply based on the overall sensor levels exceeding a threshold in short time windows, they ignore much of the
information in the complex patterns of sensor change over time, as well as the patterns of how the different

sensor channels relate to each other.

Al algorithms can learn to take advantage of such information using Machine Learning (ML) models such as Deep
Neural Networks (DNNs). DNNs can use much longer time spans of sensor data from multiple channels
simultaneously and learn how this complex sensor data differentiates the presence of different kinds of objects
(such as humans, animals, or cars), the speed of an object’s motion, and its size and position. To learn these
patterns, ML algorithms require many examples of the sensor data traces in response to the different kinds of

events important in the application.

Training Example: Hu

Sensor Output

| |

Time —

Training Example: Auto
0.2}

0.1F

01F

Sensor Output

-0.2

mobile

Qv

Time —

Copyright © 2019 SYNTIANT | 7555 Irvine Center Drive Suite 200, Irvine, CA 92618 | www.syntiant.com

Example Application: Home Entry Door Surveillance

A common application for PIR sensors is in a home surveillance application of an entry door (see lllustration 5).
In this application the sensors enable a homeowner to receive alerts, sometimes with accompanying video data, if

a person approaches the door. The PIR sensors are included with a small battery-powered camera that the

homeowner can easily mount outside the door.

To attempt to save power, the camera is only enabled if the PIR sensors detect motion. However, because of the
simplicity of the detection algorithms and the complexity of the outdoor environment, such systems are heavily

susceptible to false alarms from pets, cars, and even people walking past on the sidewalk.

- Delivery
person Automobiles
= . i / / / ¢ \\
2, b ._
3 »v{ W M‘f‘:“t{f\ﬁ{?» St --ﬁ i(f""a_.r 4(;»— ‘{[\r
5 | l' l
(2]
[gl \
Q I
wn
0 20 40 60 80 100 120

Time (seconds)

lllustration 5: Video snapshot and accompanying PIR sensor data trace for a home entry door surveillance

deployment.

Copyright © 2019 SYNTIANT | 7555 Irvine Center Drive Suite 200, Irvine, CA 92618 | www.syntiant.com

lllustration 6 shows how a properly trained DNN can be used to dramatically reduce both false alarms and
missed detections for this application. Compared to the simple threshold-based algorithm, the DNN could be used
to reduce false alarms by 80%, missed detections by 60%, or both types of errors simultaneously by 40%.

The model used in this example was trained on the outputs of PIR sensors exposed to approaching humans and
passing cars, as well as instances with no moving objects. The training involved two hundred 1-minute long PIR
time series from a wide variety of locations. Models were then tested on a held out set of PIR sensor locations
and compared to a simple threshold-and-count algorithm supplied by an experienced customer known for

commercial PIR deployments.

0.9 -60% MD A

0.8 Threshold detector X
25% FA, 17% MD

® 0.
o DNN detector Y o
== DNN-based detction
0.6 15% FA, 10% MD = Threshold-based detection
DNN detector Z FA = False Alarms

MD = Missed Detections

0.5 5% FA, 17% MD

04 | | | | | | |

, 7-40% both

809 FA

1 J

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Precision

0.9 1

While DNNs can use longer time spans of sensor outputs to their advantage, this introduces signal latency, if
sensor outputs are being used to make a decision about motion activity in the recent past. Latency is similarly
introduced by the detector counters in threshold-based detectors. Latency is potentially an issue in applications
where video data is being buffered and streamed off device upon a detection event. In order to catch the video
corresponding to the motion event, longer video clips have to be buffered and streamed for detectors with longer

latency. This consumes more system resources and power.

Copyright © 2019 SYNTIANT | 7555 Irvine Center Drive Suite 200, Irvine, CA 92618 | www.syntiant.com

As shown in lllustration 7(a), latency is easily configurable in DNN-based detectors by excluding future sensor
data from models making decisions about the current frame. The amount of future context used to train a model
will set its corresponding signal latency. lllustration 7(b) shows the performance impact of reducing the signal
latency from 3 seconds to 0.25 seconds, compared to the threshold-based detector with a latency of 0.25
seconds. In this case, the DNN-based detector is still able to maintain a large advantage over the threshold-based
detector, possibly because of its remaining ability to use long time spans in the past to make a decision about the
current frame.

0.15¢

0.1

0.05

—
Q
N
o
)
e

005+ 005+ 2}
5
-01 0.1F el
015+ 015r (.\Il.
-3s +3s -3s
Human?
(b) Precision-Recall Curve, Human vs Automobile Detection
0.85
0.8
0.75
©
g 0.7
o
0.65 === DNN 3s latency
=== DNN 0.25s latency
0.6 === Threshold 0.25s latency
0.55
0.5
0.7 0.75 0.8 0.85 0.9 0.95 1

Precision

Copyright © 2019 SYNTIANT | 7555 Irvine Center Drive Suite 200, Irvine, CA 92618 | www.syntiant.com 8

Using the Syntiant NDP to Run Al Algorithms at Ultra-Low Power

Previously, DNN-based PIR detection algorithms had been too compute intensive to be deployed in low-power
systems. However, the Syntiant NDP was designed to run DNNs with up to four hidden layers while consuming
under 200 microwatts (uW) of power during active sensor processing. One such example is the DNN used to
achieve the results shown in lllustration 6.

Once appropriate training data is obtained and prepared for training DNNs, the Syntiant Training Development Kit
(TDK) can easily be used to train and test models that are ready for deployment on the NDP. Model training and
testing is performed through a familiar Keras Python interface to TensorFlow, the most widely used library for
DNN-based system development. Models can be trained on premises or on standard AWS EC2 instances
running Deep Learning AMIs, potentially employing GPU co-processors to speed up training. Syntiant also offers
services to accelerate data collection, data preparation, model training, and developer training.

68008 train samples

10000 test samples

Train on 60800 samples, validate on 1008@ samples

Epoch 1/4

2018-08-29 21:46:13.605822: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorF
2018-08-29 21:46:15.458819: 1 tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:895] successful NUMA node read from SysFS had
2018-08-29 21:46:15.459151: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1105] Found device @ with properties:

name: Tesla K88 major: 3 minor: 7 memoryClockRate(GHz): ©.8235

pciBusID: 090@0:00:1e.0

totalMemory: 11.17GiB freeMemory: 11.18GiB

2018-08-29 21:46:15.459183: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1195] Creating TensorFlow device (/device:GPU:®) -

60000/60000 [==============================] - 15s 251us/step - loss: ©.9844 - acc: 0.6935 - val_loss: 0.2746 - val_acc: 0.9194
Epoch 2/4

60000/60000 [=========ss=zss=sssssssssss===] - 1s 10us/step - loss: 0.2881 - acc: ©.9163 - val_loss: 0.1715 - val_acc: 0.9509
Epoch 3/4

60000/60000 [======cmzzs=mszsssrsssszzsss=s] - 1s 10us/step - loss: 0.1998 - acc: ©.9434 - val_loss: 0.1334 - val_acc: 0.9614
Epoch 4/4

60000/60000 [==============================] - 1s 1Qus/step - loss: 0.1567 - acc: ©.9555 - val_loss: ©.1110 - val_acc: 0.9666

Test loss: ©0.11102039980888366

Test accuracy: 0.9666

Your classification accuracy is 'good enough'.

BHBBRRAAR BB R BB BB BRR B R R AR R B RREBRBBARRBRR B RRBARBERRHBBRRBORRBARRERRABRRE
Now we are going to quantize the weights we just learned and re-run the test set.
The test accuracy should not get substantially worse.
HARBRRRBERRBARRARRRBARRBRRRARRBRRRBARRBRRBARARAERRBRARBAARBERRBRARARRAARRRBRRRRER
Quantized Test loss: ©.11325708038218869

Quantized Test accuracy: 0.9672

The loss changed by: ©.8022366805732250278

The accuracy changed by: 0.8005999999999999339

Models trained with Syntiant’s TDK are ready for system integration using the Syntiant Software Development Kit
(SDK), either for live testing on the Syntiant NDP9101 Rasberry Pi evaluation system, or for production
deployment. The SDK provides a collection of software for execution on companion processor(s) responsible for
controlling NDP devices, such as an associated application processor (AP) or an NDP-embedded processor (for
example, the ARM MO microcontroller of an NDP device). The SDK source code may also be used as an example
in deployments for which direct integration is not appropriate.

Copyright © 2019 SYNTIANT | 7555 Irvine Center Drive Suite 200, Irvine, CA 92618 | www.syntiant.com 9

@ X
a &
==
11

H—a MMISO
-+—a MMOSI

CLK w— CLK Gen SPI Master Neural Network NDP101
DBG ®1 Micro
GPIO »—— Controller
DAT »—4 Audio | Feature Output
PCLKIN &9 Front Extraction Processing
PCLKOUT/FS w—— B
Holding -
Tank SPI Slave _aINT
l l l " e AN
caown o O®n
=30 v A
8g~” “RE8
>

IMG-00021-BLR02-1932

Summary

Increasing PIR’s Powers of Observation Without Increasing its Power Consumption

Al algorithms employing DNNs enable dramatic improvements in distinguishing humans from other moving
objects using PIR sensors. This exemplifies what is achievable in many other PIR sensor use cases, including in
manufacturing, robot navigation, and agriculture -- as well as with many other types of inexpensive sensors.
These sensors have had limited observational powers because they’ve been deployed in ultra-low-power
compute environments that are severely limited in on-device intelligence and the ability to continuously stream
data off the devices.

The Syntiant NDP removes the computation bottleneck for Al algorithms at ultra-low-power consumption. The
NDP architecture is built from the ground up to run DNNSs. It achieves breakthrough performance by highly
coupled computation and memory, exploiting the vast inherent parallelism of DNN computation and computing
only at required numerical precision. The devices combine these benefits to achieve approximately 100x
efficiency improvement over stored program architectures such as CPUs and DSPs. Furthermore, they are easily
programmed and integrated using Syntiant’'s accompanying TDK and SDK.

Copyright © 2019 SYNTIANT | 7555 Irvine Center Drive Suite 200, Irvine, CA 92618 | www.syntiant.com 10

